NPS-CS-02-005
September 2002

—7//-
-
ol

R I white paper

The Center for INFOSEC Studies and Research

Demonstration of Quality of Security Service
Awareness for IPsec

Evdoxia Spyropoulou, Timothy E. Levin, Cynthia E. Irvine

Center for Information Systems Security Studies and Research
Computer Science Department
Naval Postgraduate School

Monterey, California 93943

Demonstration of Quality of Security Service Awareness for 1Psec

Demonstration of Quality of Security Service Awarenessfor | Psec

Evdoxia Spyropoulou Timothy Levin Cynthialrvine

Naval Postgraduate School
Monterey, CA

1. Introduction

If a Quality of Service (QoS) dimension is supported, then applications and/or users can request or specify a leve of
service for one or more attributes of this dimension, and the underlying QoS control mechanism should be capable of
entering into an agreement to deliver those services at the requested levels.

Quality of Security Service (QoSS) refers to the ability to provide security services according to user and system
preferences and policies. This way security and security requests can be managed as aresponsive “service” for which
quantitative measurement of service “efficiency” is possible. The enabling technology for both QoSS and a security-
adaptable infrastructure is variant security, or the ability of security mechanisms and services to alow the amount,
kind or degree of security to vary, within predefined ranges [1].

In previous work [2][3] we have described how variant security can be offered and presented to applications and users
in an organized manner. Two abstractions were introduced:

an operational mode parameter, Network Mode, which represents the influence externa conditions and network
status could have on the security policy and security services applicable to the task: for example under certain
conditions, an administrator may be willing to accept more (or less) security for a given application. Example
values for this parameter are; normal, impacted, emergency.

a Security Level parameter, which represents the choices available to users for the security variables within the
value ranges that the policy permits for this Security Level. Example vaues for this parameter are. “high”,
13 mwl um” , 13 IO\NH .
The selections for the Network Mode and Security Level parameters are mapped to detailed mechanism invocations
via a trandation matrix.

As a proof of concept we want to demonstrate how an underlying specific security mechanism can be modulated to
provide different levels for security in response to QoSS requests from users. In the next paragraphs we present our
demonstration of QoSS awareness for 1Psec. In the demo QoSS conditions are linked to 1Psec, so that we can adjust
the kind of security services provided to applications according to QoSS "handles’, like the network mode and/or the
security level.

In section 2 we provide some IPsec background and describe how QoSS notions can be linked to this security
mechanism. Section 3 gives a brief description of the demo's functionality. Section 4 discusses the 1Psec's Security
Policy Database and how to put mles into it. In sections 5 and 6 we discuss Internet Key Exchange daemon's
configuration and policy issues. Section 7 presents the functionality of the QoSS management module. Display of
traffic data and of established security parameters is discussed in sections 8 and 9. Section 10 contains a detailed list of
demondtration steps and files.

Weve included in two Appendixes some OpenBSD specific information we considered useful for reference purposes.
Appendix A contains ingtdlation guidelines and Appendix B information for setting up a Certificate Authority and
generating keys and certificates.

It should be noted that for our demo we use the | Psec implementation of OpenBSD version 2.9.

Demonstration of Quality of Security Service Awareness for 1Psec

2. | Psec and QoSS

As described in [4] "IPsec provides security services at the IP layer by enabling a system to select required security
protocols, determine the agorithm(s) to use for the service(s), and put in place any cryptographic keys required to
provide the requested services. |Psec can be used to protect one or more "paths' between a pair of hosts, between apair
of security gateways, or between a security gateway and ahost. [...]

"The set of security services that IPsec can provide includes access control, connectionless integrity, data origin
authentication, rejection of replayed packets (a form of partia sequence integrity), confidentidity (encryption), and
limited traffic flow confidentiality. Because these services are provided at the IP layer, they can be used by any higher
layer protocol.”

IPsec provides traffic security "through the use of two traffic security protocols, the Authentication Header (AH) and
the Encapsulating Security Payload (ESP), and through the use of cryptographic key management procedures and
protocols. The set of IPsec protocols employed in any context, and the ways in which they are employed, will be
determined by the security and system requirements of users, applications, and/or sites/organizations.

"When these mechanisms are correctly implemented and deployed, they ought not to adversely affect users, hosts, and
other Internet components that do not employ these security mechanisms for protection of their traffic. These
mechanisms aso are designed to be agorithm-independent. This modularity permits selection of different sets of
agorithms without affecting the other parts of the implementation. For example, different user communities may select
different sets of agorithms (creating cliques) if required.” [4]

The 1Psec mechanism provides services, including confidentiaity, integrity and authenticity, through the establishment
of Security Associations (SA) among the entities that wish to communicate. The SA is a "smplex connection that
affords security services to the traffic carried by it" and it essentidly is "a management construct used to enforce a
security policy in the IPsec environment” [4]. There is a set of parameters associated with each SA, which includes,
among others SA lifetime, encryption and/or authentication agorithms and keys, and protocol mode
(tunnel/transport). The SAs can be generated manually, but that approach does not scale well. The Internet Key
Exchange (IKE) aong with the Internet Security Association and Key Management Protocol (ISAKMP) address the
problem of establishing and maintaining SAs through the use of an automated daemon.

Information relevant to SAs and their establishment is stored in two databases in |Psec: the Security Policy Database
(SPD) and the Security Association Database (SAD). The SPD "specifies the policies that determine the disposition of
al IP traffic inbound or outbound" from a communicating entity. The SAD "contains parameters that are associated
with each active security association”.

The IPsec protocols themselves do not include an approach for managing the policies that control which host is
allowed to establish SAs with another host and what kind of characteristics the SAs should have. We are using the
OpenBSD's implementation of 1Psec. This implementation addresses the SA management problem by including a trust
management system, KeyNote, and providing an additional check in the 1Psec processing: it makes sure that the SAsto
be created agree with a local security policy (that can be expressed in the trust management system's language)

[S16][7].

When IPsec SAs are established between two entities wishing to communicate, they are used until their negotiated
lifetime expires (if the SAs are not for some reason violently interrupted/discarded). But the characteristics of the
negotiated SAs cannot respond to dynamic modifications of the environment's security requirements, for example they
cannot adapt to changes in threat conditions, critica time transmissions, and network congestion/traffic.

To have a QoSS aware IPsec, we enable the IKE daemon to negotiate SAs, and enable the Trust Management System
to enforce local policy for them, in accordance with the system's QoSS parameters (network mode, security level).
Also if there is a change in a QoSS parameter, currently active SAs must be renegotiated to conform to the current set
of security requirements (as expressed by the loca policy).

In Figure 1 we can see the components for a QoSS aware |1Psec, which will be described in detail in the following
paragraphs. The QoSS Management Module, which we have added, is responsible for fetching the current selections

Demonstration of Quality of Security Service Awareness for 1Psec

for the network mode and the security level and updating the IKE daemon's configuration data and KeyNote's local
security policy. Furthermore it signals the IKE daemon to use from then on the new configuration data and locd policy
for SA negotiations, to remove currently active SAs (if any) and to notify the peer's daemon that these SAs are no
longer valid, so that renegotiation of SAs can proceed [8].

Detects modification
in QoSS parameters

_ Kernel

I P Output
Routine

I PSec
Processing

IP Input
Routine

Figure 1: QoSS awareness for IPsec

3. Demo Overview

In our proof of concept demonstration, the IPsec processing for three specific applications varies in response to a
Security Level QoSS parameter. We display responsiveness to a system status change by adjusting the values of
security variables, like encryption agorithm used for ESP processing and authentication agorithm used for AH
processing [8].

We have three example applications in our system: fi nger, tel net and pi ng. In the paragraphs below we
describe our security policy requirements for each of them.

pi ng does not utilize any security services

t el net may use the confidentiality service provided by the ESP protocol of 1Psec. One of the security attributes
for which we have choices is the encryption agorithm, it could be any of the: DES, 3DES, RC4, IDEA, CAST,
BLOWFISH, 3IDEA, or AES.

Our security policy could say that we can only utilize these dgorithms: DES, 3DES, AES and a further refinement
in the policy, that takes into account the notion of network modes, could say:

-in Normal Mode: DES, 3DES, AES
-in Impacted Mode: no encryption, DES, 3DES

Demonstration of Quality of Security Service Awareness for 1Psec

-in Emergency Mode: AES (in this case the range is degenerate).

So the system is in one of the above modes and the user/application could request any of the available by the mode
choices for the encryption agorithm. We could go ahead and do the mapping to Security Levels for each Network
Mode and we illustrate this for the Impacted Mode:

- Low Security Level in Impacted Mode: no encryption
- Medium Security Level in Impacted Mode: DES
- High Security Level in Impacted Mode: 3DES

fi nger may use the integrity service provided by the AH protocol of IPsec. One of the security attributes for
which we have choices is the authentication agorithm, it could be any of the: HMAC-MD5, HMAC-SHA, HMAC-
RIPE-MD, DES-MAC, or KPDK. So if our policy for the Impacted Mode says that available choices are: no
authentication, HMAC-MD5, HMAC-SHA, the security levels could be mapped as.

- Low Security Level in Impacted Mode: no authentication
- Medium Security Level in Impacted Modee HMAC-MD5
- High Security Level in Impacted Mode: HMAC-SHA

So for the sake of simplicity we assume that our system is in Impacted Mode and we apply different |Psec processing
to the applications in response to the Security Level parameter, as seen in Table 1: we apply no IPsec processing to the
traffic of any of the applications when the Security Levd is Low. For Medium security, fi nger traffic is
authenticated with HMAC-MD5 and we encrypt t el net traffic with DES. If we switch to High security, f i nger

traffic is authenticated with HMAC-SHA and we encrypt t el net traffic with 3DES.

Table 1: IPsec Processing for different security levels

W LOW MEDIUM HIGH
Application
Tel net No IPsec processing ESP processing with ESP processing with
DES 3DES
Fi nger No IPsec processing AH processing with AH processing with
HMAC-MD5 HMAC-SHA
Pi ng No IPsec processing No IPsec processing No IPsec processing

4. Getting Rulesinto the Security Policy Database

"Ultimately, a security association is a management construct used to enforce a security policy in the IPsec
environment. Thus an essentiad element of SA processing is an underlying Security Policy Database (SPD) that
specifies what services are to be offered to | P datagrams and in what fashion[...]

"The SPD must be consulted during the processing of al traffic (inbound and outbound), including non-1Psec traffic.
In order to support this, the SPD requires distinct entries for inbound and outbound traffic. An SPD must discriminate
among traffic that is afforded IPsec protection and traffic that is allowed to bypass IPsec. This applies to the IPsec
protection to be applied by a sender and to the IPsec protection that must be present at the receiver. For any outbound
or inbound datagram, three processing choices are possible: discard, bypass IPsec, or apply IPsec. The first choice
refers to traffic that is not alowed to exit the hogt, traverse the security gateway, or be delivered to an application at
all. The second choice refers to traffic that is alowed to pass without additional |Psec protection. The third choice

Demonstration of Quality of Security Service Awareness for 1Psec

refers to traffic that is afforded 1Psec protection, and for such traffic the SPD must specify the security services to be
provided, protocols to be employed, algorithms to be used, etc. [...]

"Specificdly, every inbound or outbound packet is subject to processing by IPsec and the SPD must specify what
action will be taken in each case. Thus the administrative interface must alow the user (or system administrator) to
specify the security processing to be applied to any packet entering or exiting the system, on a packet by packet basis.”
[4]

The SPD can be thought of as similar to a packet filter where the actions decided upon are the activation of SA
processes [9]. In OpenBSD it is implemented as an extension to the routing table (Figure 2). Changes to the SPD can
be made manualy through the i psecadmutility. Furthermore, the IKE daemon can cause modifications to the SPD.
In both cases the PF_KEY API isused [10].

Manual Keying
Implemented as extension P F_KEY
to routing table % Key Management
Daemons

Policy [Direction

Action

Proto SA
1P

TCP

Protocol
Type
ESP Require In

AH Acquire Out
Permit
L Deny

Figure 2. Security Policy Database in OpenBSD

Some details for thei psecadm f I ow command of OpenBSD that manages the SPD can be found below:

"i psecadm f | ow: Create a flow determining what security parameters a packet should have (input or output).
Allowed modifiersare: -src, -dst, -proto, -addr, -transport, -sport, -dport, -delete,

-in, -out, -deny, -srcid, -dstid, -srcid type, -dstid type, -use, -acquire, -

require, -dontacq, -permt, and -bypass. The netstat (1) command shows al specified flows.
Flows are directional, and the -i n and - out modifiers are used to specify the direction. By default, flows are
assumed to apply to outgoing packets. The kernel will attempt to find an appropriate Security Association from those
already present (an SA that matches the destination address, if set, and the security protocal). If the destination address
is set to all zeroes (0.0.0.0) or left unspecified, the destination address from the packet will be used to locate an SA (the
source address is used for incoming flows). For incoming flows, the destination address (if specified) should point to
the expected source of the SA (the remote SA peer). If no such SA exists, key management daemons will be used to
generate them if - acqui r e or - r equi r e were used. If - acqui r e was used, traffic will be allowed out (or in) and
IPsec will be used when the relevant SAs have been established. If - r equi r e was used, traffic will not be allowed in
or out until it is protected by IPsec. If - dont acq was used, traffic will not be dlowed in or out until it is protected by
IPsec, but key management will not be asked to provide such an SA. The - pr ot o argument (by default set to esp)
will be used to determine what type of SA should be established. A bypass or per mi t flow is used to specify aflow

Demonstration of Quality of Security Service Awareness for 1Psec

for which IPsec processing will be bypassed, i.e packets will/need not be processed by any SAs. For per mi t flows,
additiona modifiers are redtricted to: - addr, -transport, -sport, -dport,-in,-out,and -del ete. A
deny flow is used to specify classes of packets that must be dropped (either on output or input) without further
processing. deny takes the same additiona modifiersasbypass” [11].

In our demonstration we use the file vpn28_ah_a (Figure 3) to put the rules into the SPD. This script must be
executed on the initiator's side before traffic from the applications is generated, otherwise no |Psec processing will be
applied to that traffic. It establishes four flows:

One pair for t el net traffic, that mandates ESP |Psec processing for incoming and outgoing t el net packets.

Onepair for f i nger traffic, that mandates AH |Psec processing for incoming and outgoing f i nger packets.
In both cases, traffic from these applications will not be alowed in or out until it is protected by |Psec.

For traffic of any other application to be subject to IPsec processing, a smilar pair of flows should be established.
Since no rule for pi ng is present, it will be alowed to bypass | Psec.

NOTE: In OpenBSD 2.9, it is not possible to apply different ESP processing to two applications (or different AH
processing to two applications). That is, if a pair of ESP SAs has already been established, they will be used for
subsequent traffic requiring ESP processing. Thisisdue to unfinished codein OpenBSD development and it will be
addressed in future versions. That'swhy for the moment our demo displays different processing for two applications
only, one with ESP, the other with AH.

On the responder's side there is no need to initidly load rules into the SPD. Once the SAs are negotiated and
established, rules are automaticaly put into the SPD.

NOTE: In[5] asimilar behavior isdescribed for the initiator's side. If this was accurate, then there would not be a
need to initially populate the SPD at theinitiator. The policy expressed in KeyNote policy files should be enough to
trigger the negotiations. This approach is not yet implemented in OpenBSD, that's why it's necessary to execute a
script file, like that of Figure 3.

#!'/ bi n/ sh

#Set-up flows for the two specific hosts

#Use for defining applications FINGER and TELNET
ESP for TELNET

AH for FINGER

-dport for egress traffic

-sport for ingress traffic

Local and renote hosts
LOCAL_HOST=a. b.c.d
REMOTE_HOST=X.y.z.w

i psecadn¥/ shi n/i psecadm
Create the host-to-host flow

#egress flow for finger

$i psecadm fl ow -dst $REMOTE_HOST -proto ah \
-addr $LOCAL_HOST 255. 255. 255. 255 \
$REMOTE_HOST 255. 255. 255. 255 \
-transport tcp -dport 79 \
-src $LOCAL_HOST -out -require

#ingress flow for finger

$i psecadm fl ow -dst $REMOTE_HOST -proto ah \
-addr $REMOTE_HOST 255. 255. 255. 255 \
$LOCAL_HOST 255. 255. 255. 255 \
-transport tcp -sport 79 \

Demonstration of Quality of Security Service Awareness for 1Psec

-src $REMOTE_HOST -in -require

#egress flow for tel net

$i psecadm fl ow -dst $REMOTE_HOST -proto esp \
-addr $LOCAL_HOST 255. 255. 255. 255 \
$REMOTE_HOST 255. 255. 255. 255 \
-transport tcp -dport 23\
-src $LOCAL_HOST -out -require

#ingress flow for tel net

$i psecadm fl ow -dst $REMOTE_HOST -proto esp \
-addr $REMOTE_HOST 255. 255. 255. 255 \
$LOCAL_HOST 255. 255. 255. 255 \
-transport tcp -sport 23\
-src $REMOTE_HOST -in -require

exit O

Figure 3: Script file with rules for SPD —vpn28_ah_a
By issuing the command
netstat -rn -f encap

we can observe the routing tables (- r option) and more specifically, the ones related to IPsec (-f encap option).
These are the rules that we have added to the SPD (Figure 4).

Routing tabl es

Encap:

Sourge Port Destination Port Proto SA(Address/Proto/ Type/ Direction)
W. X.Yy.z/ 32 23 a.b.c.d/ 32 0 6 W. X.y.z/50/require/in

W X.Yy.zl32 79 a.b.c.d/ 32 0 6 W. X.y.z/51/require/in

a.b.c.d/ 32 0 W. X.Yy.z/32 23 6 w. X. y. z/ 50/ requi re/ out

a.b.c.d/ 32 0 W, X.Yy.z/32 79 6 W. X.y. z/ 51/ require/ out

Figure 4: Flows in output of net st at command

5. Configuring the IKE Daemon

The IKE daemon i saknpd is the key exchange and SA negotiation mechanism for |Psec. It automatically manages
the exchange of cryptographic keys that would otherwise have to be manualy managed with the i psecadmutility.
i saknpd daemon is used when two systems need to automatically setup a pair of Security Associations (SAs) for
securely communicating using |Psec. IKE operates in two stages:

Phase 1 (Main or Identity Protection Mode) - "the two IKE daemons establish a secure link between themselves, fully
authenticating each other and establishing key materia for encrypting/authenticating future communications between
them. This step is typically only performed once for every pair of IKE daemons’.

Phase 2 (Quick Mode) - "the two IKE daemon create the pair of SAs for the parties that wish to communicate using
|Psec. These parties may be the hosts the IKE daemons run on, a host and a network behind afirewall, or two networks
behind their respective firewalls. At this stage, the exact parameters of the SAs (e.g., algorithms to use, encapsulation
mode, lifetime) and the identities of the communicating parties (hosts, networks, etc.) are specified. The reason of
existence of Quick Mode is to alow for fast SA setup, once the more heavyweight Main Mode has been completed.
Generdly, Quick Mode uses the key materia derived from Main Mode to provide keys to the IPsec transforms to be
used. Alternatively, a new Diffie-Hellman computation may be performed (significantly dowing down the exchange,
but at the same time providing Perfect Forward Secrecy (PFS))" [12].

i saknpd. conf is the configuration file for the i saknpd daemon managing security association and key
management for the IPsec layer of the kernel's networking stack and it's typically placed in the / et ¢/ i saknpd

Demonstration of Quality of Security Service Awareness for 1Psec

directory [13]. The file is of a wdl known type of format called .INI style. This format consists of sections, each
beginning with aline looking like:

[Section name]

Between the brackets is the name of the section following this section header. Inside a section many tag/value pairs can
be stored, each onelooking like:

Tag=Vaue
It should be noted that some parts of the IKE daemon's configuration are auto-generated. Some predefined section

names are recognized by the daemon, voiding the need to fully specify the Main Mode transforms and Quick Mode
auites, protocols and transformsin thei saknpd. conf file

For Main Mode
{DESBLF,3DES CAST}-{MD5,SHA}[-{DSSRSA_SIG}]

For Quick Mode
QM-{ESP,AH}[-TRP]-{DES3DES CAST,BLF,AES}[-{MD5,SHA,RIPEMD}][-PFS]-SUITE

All auto-generated values can be overridden by manual entries by using the same section and tag names in the
configuration file.

For more details on what each tag name means, [13] and [9] should be consulted. Of specid interest though is the
Default-Phase-2-Suites tag. This tag describes alist of Phase 2 suitesthat will be used when establishing dynamic SAs.
If left unspecified, QM-ESP-3DES-SHA-PFS-SUITE is used as the default. From thislist the set of proposals for SAs
that the initiator's IKE daemon sends to the other daemon is formed.

In our QoSS cemo we want a different list of Phase 2 suites to be proposed to the other 1Psec node, for medium and
high security level (for low security level no IPsec processing is required by our policy). So we are using a predefined
set of dternate IKE configuration data and local security policies that describe the characteristics we want our SAs to

have for each security level and we make active the proper i saknpd. conf file through our QoSS module. The
different IKE configuration data that we are using can be seenin Figures 5 and 6.

The main difference of these filesis at the Default-Phase-2-Suites tag. The detailed breakdown and description of the
suites is not necessary for the ESP suites used, since they are part of the auto-generated configuration. Only vaues
overriden are needed to be present. The AH suites we use though should be explicitly defined (auto-generated info
does not include them). Generdly it is suggested as a good practice to fully describe the proposed suites in the

i saknpd. conf file, to be sure of the various values used.

#i saknpd. conf . medi um

[General]

Li sten-on= a.b.c.d

Shar ed- SADB= Def i ned

Retransni t s= 5

Exchange- max-ti me= 120

Def aul t - Phase- 2- Sui t es= QW ESP- DES- MD5- PFS- SUI TE, QW AH- MD5- PFS- SUI TE
#set-up to work specifically with responder with new configuration style
[Phase 1]

W.X.Yy.Z = Peer-w. x.y.z/a.b.c.d

[Peer- w. x.y.z/a.b.c.d]

Phase= 1

Addr ess= W X.Y.Z

Local - addr ess= a.b.c.d

Transport = udp

Confi guration= Def aul t - mai n- node
Aut henti cati on= nmekm t asdi goat

Demonstration of Quality of Security Service Awareness for 1Psec

[Def aul t - mai n- mode]

DA = | PSEC
EXCHANGE_TYPE= | D_PROT
Tr ansf or ne= 3DES- SHA

Qui ck node protection suites
[Qv ESP- DES- MD5- PFS- SUl TE]
Pr ot ocol s= QM ESP- DES- MD5- PFS

[QW AH MD5- PFS- SUI TE]
Pr ot ocol s= Qv AH- MD5- PFS
Qui ck node protocols

[QW ESP- DES- MD5- PFS]
PROTOCOL_| D=
Transforns=

| PSEC_ESP
QW ESP- DES- MD5- PFS- XF

[Qv AH- MD5- PFS]
PROTOCOL_| D=
Transforns=

| PSEC_AH
QW AH MD5- PFS- XF

Qui ck node transfornms
[Qv ESP- DES- MD5- PFS- XF]

TRANSFORM | D= DES
ENCAPSULATI ON_MODE= TUNNEL
GROUP_DESCR PTI ON= MODP_1024
AUTHENTI CATI ON_ALGORI THVE HVAC_MD5

Life= LI FE_3600_SECS

[QW AH- MD5- PFS- XF]

TRANSFORM | D= N5
ENCAPSULATI ON_MODE= TUNNEL
GROUP_DESCR PTI ON= MODP_1024
AUTHENTI CATI ON_ALGORI THVE HVAC_MD5

Life= LI FE_3600_SECS
[LI FE_3600_SECS]

LI FE_TYPE= SECONDS

LI FE_DURATI ON=

[X509-certificates]
CA-directory=
Cert-directory=
Privat e- key=

3600, 1800: 7200

[etc/isaknpd/ cal
letclisaknpd/certs/
/etclisaknpd/private/initiator.key

Figure 5: i saknpd. conf on Initiator for medium security level

#i saknpd. conf. hi gh

[General]

Li st en-on=

Shar ed- SADB=
Retransm t s=
Exchange- max-ti nme=

Def aul t - Phase- 2- Sui t es=

a.b.c.d

Def i ned

5

120

QW ESP- 3DES- SHA- PFS- SUl TE, Qf AH SHA- PFS- SUI TE

#set-up to work specifically with responder with new configuration style

[Phase 1]
W. X.Yy.z=

[Peer-w. x.y. z/a.b.c.

Peer-w. x.y.z/a.b.c.d

d]

Demonstration of Quality of Security Service Awareness for 1Psec

Phase=

Addr ess=
Local - addr ess=
Transport =
Configuration=
Aut henti cati on=

[Def aul t - mai n- node]
DA =

EXCHANGE TYPE=
Transforns=

s -

L X. Y. Z
.b.c.d

udp

Def aul t - mai n- rode

nmekm t asdi goat

Q

| PSEC
| D_PROT
3DES- SHA

Qui ck node protection suites
[QW ESP- 3DES- SHA- PFS- SUl TE]
Pr ot ocol s= Qw ESP- 3DES- SHA- PFS

[QW AH SHA- PFS- SUI TE]
Pr ot ocol s= Qwt AH- SHA- PFS
Qui ck node protocols

[QW ESP- 3DES- SHA- PFS]

PROTOCOL_| D=
Tr ansf or ns=

[QW AH SHA- PFS]
PROTOCOL_| D=
Transf orns=

| PSEC_ESP
QW ESP- 3DES- SHA- PFS- XF

| PSEC_AH
QW AH SHA- PFS- XF

Qui ck node transforns
[Q\t ESP- 3DES- SHA- PFS- XF]

TRANSFCRM | D= 3DES
ENCAPSULATI ON_MODE= TUNNEL

AUTHENTI CATI ON_ALGORI THVE HVAC_SHA
GROUP_DESCR PTI ON= MODP_1024

Life= LI FE_3600_SECS

[QW AH- SHA- PFS- XF]

TRANSFORM | D= SHA
ENCAPSULATI ON_MODE= TUNNEL
GROUP_DESCR! PTI ONe MODP_1024
AUTHENTI CATI ON_ALGORI THVE HVAC_SHA

Life= LI FE_3600_SECS

[LI FE_3600_SECS]
LI FE_TYPE=

LI FE_DURATI ON=

SECONDS
3600, 1800: 7200

[X509-certificates]
CA-directory=
Cert-directory=
Privat e- key=

[etc/isaknpd/ cal
/etcl/isaknpd/ certs/
/etcl/isaknpd/ private/initiator.key

Figure 6: i saknpd. conf on Initiator for high security level

The configuration file for the IKE daemon of the responder can be seen in Figure 7, where descriptions of various
suites are kept for illustration purposes (it's not necessary to have al of them in the file).

[General]

Li sten-on= W X.Y.Z
Shar ed- SADB= Def i ned
Retransm ts= 5
Exchange- max-tine= 120

10

Demonstration of Quality of Security Service Awareness for 1Psec

#setup to work specifically with initiator with new configuration style
[Phase 1]
a.b.c.d= Peer-a.b.c.d/w. x.y.z

#setup to work specifically with initiator with new configuration style
[Peer-a.b.c.d/wx.y.z]

Phase= 1

Transport = udp

Local - addr ess= W X.Y.Z

Addr ess= a.b.c.d

Confi guration= Def aul t - mai n- node
Aut henti cati on= nmekm t asdi goat

[Def aul t - mai n- mode]

DA = | PSEC

EXCHANGE_TYPE= | D_PROT

Transf or ms= 3DES- SHA

[Def aul t - qui ck- mode]

DA = | PSEC

EXCHANCGE_TYPE= QU CK_MODE

Sui t es= QW ESP- DES- MD5- PFS- SUI TE

Qui ck node protection suites

DES

[Qv ESP- DES- SUl TE]

Pr ot ocol s= Qwvt ESP- DES

[QW ESP- DES- PFS- SUl TE]

Pr ot ocol s= Qv ESP- DES- PFS

[QW ESP- DES- MD5- SUl TE]

Pr ot ocol s= Qw ESP- DES- M5

[QW ESP- DES- MD5- PFS- SUI TE]

Pr ot ocol s= Qw ESP- DES- MD5- PFS
[QVt ESP- DES- SHA- SUI TE]

Prot ocol s= QW ESP- DES- SHA

[Qt ESP- DES- SHA- PFS- SUI TE]

Prot ocol s= QMW ESP- DES- SHA- PFS
3DES

[QW ESP- 3DES- SHA- SUI TE]

Pr ot ocol s= Qwt ESP- 3DES- SHA

[Qt ESP- 3DES- SHA- PFS- SUI TE]

Prot ocol s= QW ESP- 3DES- SHA- PFS
CAST

[QW ESP- CAST- SHA- SUI TE]

Prot ocol s= QMW ESP- CAST- SHA

[QW ESP- CAST- MD5- SUI TE]
Pr ot ocol s= Qwt ESP- CAST- M5

[Qt ESP- CAST- SHA- PFS- SUI TE]
Prot ocol s= QMW ESP- CAST- SHA- PFS

[QW ESP- CAST- MD5- PFS- SUI TE]

11

Demonstration of Quality of Security Service Awareness for 1Psec

Prot ocol s= QW ESP- CAST- MD5- PFS
AH

[Qv AH- MD5- SUI TE]

Pr ot ocol s= Qv AH MD5

[QW AH MD5- PFS- SUI TE]

Pr ot ocol s= Qwt AH- MD5- PFS

[Qv AH SHA- SUI TE]

Prot ocol s= Q\t AH SHA

[QW AH SHA- PFS- SUI TE]

Prot ocol s= QW AH SHA- PFS

AH + ESP

[Qt AH- MD5- ESP- DES- SUI TE]

Pr ot ocol s= Qwvt AH- MD5, QW+ ESP- DES

[Qv+ AH- MD5- ESP- DES- MD5- SUI TE]
Prot ocol s= Qut AH- MD5, QW ESP- DES- MD5

[Qt ESP- DES- MD5- AH- MD5- SUI TE]
Prot ocol s= QW ESP- DES- MD5, QW AH- MDB

Qui ck node protocols

DES

[Qv ESP- DES]

PROTOCOL_| D= | PSEC_ESP

Tr ansf or ns= QMW ESP- DES- XF

[QVt ESP- DES- MD5]

PROTOCOL_| D= | PSEC_ESP

Transf ornms= Qwt ESP- DES- MD5- XF

[QW ESP- DES- MD5- PFS]

PROTOCOL_| D= | PSEC_ESP

Transforns= QW ESP- DES- MD5- PFS- XF
[QW ESP- DES- SHA]

PROTOCOL_| D= | PSEC_ESP

Transforns= QW ESP- DES- SHA- XF

3DES

[Qt ESP- 3DES- SHA]

PROTOCOL_| D= | PSEC_ESP

Transforns= QWi ESP- 3DES- SHA- XF

[QW ESP- 3DES- SHA- PFS]

PROTOCOL_| D= | PSEC_ESP

Transf ornms= QWi ESP- 3DES- SHA- PFS- XF
[QW ESP- 3DES- SHA- TRP]

PROTOCOL_| D= | PSEC_ESP

Transforns= QW ESP- 3DES- SHA- TRP- XF
CAST

[QU+ ESP- CAST- SHA]

PROTOCOL_| D= | PSEC_ESP

Tr ansf or ns= QMW ESP- CAST- SHA- XF

[QW ESP- CAST- MD5]

Demonstration of Quality of Security Service Awareness for 1Psec

PROTOCOL_| D= | PSEC_ESP

Transf or nms= Qwt ESP- CAST- MD5- XF
[QW ESP- CAST- SHA- PFS]

PROTOCOL_| D= | PSEC_ESP
Transforns= QW ESP- CAST- SHA- PFS- XF
[QW ESP- CAST- MD5- PFS]

PROTOCOL_| D= | PSEC_ESP

Transf orns= QW ESP- CAST- MD5- PFS- XF
AH MD5

[Qv AH- MD5]

PROTOCOL_| D= | PSEC_AH

Transf ornms= Qv AH- MD5- XF

[Qv AH- MD5- PFS]

PROTOCOL_| D= | PSEC_AH

Transf ornms= QW AH- MD5- PFS- XF

AH SHA

[Qv+ AH- SHA]

PROTOCOL_| D= | PSEC_AH

Tr ansf or ns= QW AH SHA- XF

[QW AH- SHA- PFS]

PROTOCOL_| D= | PSEC_AH
Transforns= Qv AH SHA- PFS- XF

QUi ck node transfornms

ESP DES

[QW ESP- DES- XF]

TRANSFORM | D= DES

ENCAPSULATI ON_MODE= TUNNEL

Li fe= LI FE_600_SECS

[QW ESP- DES- MD5- XF]

TRANSFORM | D= DES
ENCAPSULATI ON_MODE= TUNNEL
AUTHENTI CATI ON_ALGORI THVE HVAC_MD5

Li f e= LI FE_600_SECS
[QW ESP- DES- MD5- PFS- XF]

TRANSFORM | D= DES
ENCAPSULATI ON_MODE= TUNNEL
GROUP_DESCR! PTI ON= MODP_1024
AUTHENTI CATI ON_ALGORI THVE HVAC_MD5

Li f e= LI FE_3600_SECS
[QW ESP- DES- SHA- XF]

TRANSFORM | D= DES
ENCAPSULATI ON_MODE= TUNNEL
AUTHENTI CATI ON_ALGORI THVE HVAC_SHA

Li f e= LI FE_600_SECS
3DES

[QW ESP- 3DES- SHA- XF]

TRANSFORM | D= 3DES
ENCAPSULATI ON_MODE= TUNNEL
AUTHENTI CATI ON_ALGORI THVE HVAC_SHA

Li f e= LI FE_60_SECS

13

Demonstration of Quality of Security Service Awareness for 1Psec

[Qv ESP- 3DES- SHA- PFS- XF]
TRANSFORM | D=

ENCAPSULATI ON_MODE=
AUTHENTI CATI ON_ALGORI THWE=
GROUP_DESCRI PTI ON=

Life=

[QW ESP- 3DES- SHA- TRP- XF]
TRANSFORM | D=

ENCAPSULATI ON_MODE=
AUTHENTI CATI ON_ALGORI THVE
Life=

#CAST

[QW ESP- CAST- SHA- XF]
TRANFORM | D=

ENCAPSULATI ON_MODE=
AUTHENTI CATI ON_ALGORI THWF
Life=

[QW ESP- CAST- MD5- XF]
TRANFORM | D=

ENCAPSULATI ON_MODE=
AUTHENTI CATI ON_ALGORI THWE=
Life=

[QW ESP- CAST- SHA- PFS- XF]
TRANFORM | D=

ENCAPSULATI ON_MODE=
AUTHENTI CATI ON_ALGORI THW-
GROUP_DESCRI PTI ON=

Life=

[QW ESP- CAST- MD5- PFS- XF]
TRANFORM | D=

ENCAPSULATI ON_MODE=
AUTHENTI CATI ON_ALGORI THWE=
GROUP_DESCRI PTI ON=

Life=

AH

[Qv+ AH- MD5- XF]
TRANSFORM | D=

ENCAPSULATI ON_MODE=
AUTHENTI CATI ON_ALGORI THW=
Life=

[Qv AH- MD5- PFS- XF]
TRANSFORM | D=

ENCAPSULATI ON_MODE=
GROUP_DESCRI PTI ON=
AUTHENTI CATI ON_ALGCRI THW-
Life=

[QW AH- SHA- XF]
TRANSFORM | D=

ENCAPSULATI ON_MODE=
AUTHENTI CATI ON_ALGORI THWF
Life=

[QW AH- SHA- PFS- XF]
TRANSFORM | D=
ENCAPSULATI ON_MODE=

3DES

TUNNEL
HVAC_SHA
MODP_1024

LI FE_3600_SECS

3DES
TRANSPORT
HVAC SHA

LI FE_60_SECS

CAST

TUNNEL
HVAC_SHA

LI FE_60_SECS

CAST

TUNNEL

HVAC MD5

LI FE_60_SECS

CAST

TUNNEL

HVAC SHA
MODP_1024

LI FE_60_SECS

CAST

TUNNEL

HVAC MD5
MODP_768

LI FE_60_SECS

ND5

TUNNEL
HVAC_MD5

LI FE_60_SECS

ND5

TUNNEL
MODP_768
HVAC_MD5

LI FE_3600_SECS

SHA

TUNNEL
HVAC_SHA

LI FE_60_SECS

SHA
TUNNEL

14

Demonstration of Quality of Security Service Awareness for 1Psec

GROUP_DESCR! PTI ON= MODP_1024
AUTHENTI CATI ON_ALGORI THVE HVAC_SHA

Life= LI FE_3600_SECS
[LI FE_30_SECS]

LI FE_TYPE= SECONDS

LI FE_DURATI ON= 30, 25: 35

[LI FE_60_SECS]

LI FE_TYPE= SECONDS

LI FE_DURATI ON= 60, 45: 120

[LI FE_180_SECS]

LI FE_TYPE= SECONDS

LI FE_DURATI ON= 180, 120: 240
[LI FE_600_SECS]

LI FE_TYPE= SECONDS

LI FE_DURATI ON= 600, 450: 720
[LI FE_3600_SECS]

LI FE_TYPE= SECONDS

LI FE_DURATI ON=

3600, 1800: 7200

[LI FE_1000_KB]

LI FE_TYPE= KI LOBYTES

LI FE_DURATI ON= 1000, 768: 1536

[LI FE_32_MB|

LI FE_TYPE= KI LOBYTES

LI FE_DURATI ON= 32768, 16384: 65536
[LI FE 4.5_GB]

LI FE_TYPE= KI LOBYTES

LI FE_DURATI ON= 4608000, 4096000: 8192000

[X509-certificates]

CA-directory= [etc/isaknpd/ cal
Cert-directory= /etc/isaknpd/ certs/
Privat e- key= [etc/isaknpd/ private/responder. key

Figure 7: i saknpd. conf on Responder

A couple of observations for these configuration files:

Peers authenticate each other through a pre-shared secret. Certificates could also be used (see Appendix B for some
info). In that case the transform suite used for Phase 1 (Main Mode) should change to 3DES-SHA-RSA_SIG for
example, and the Authentication tag should be removed.

The lifetime of the Initiator's proposas is 1 hour. This way, issues like expiration handling and re-initiation of
negotiations from any of the two peers were not addressed. Further experimentation is needed.

6. Enforcing Policy with KeyNote Trust Management System

KeyNate, atrust management system [6], is used in OpenBSD for enforcing the local policy that controls which host is
alowed to establish SAs with another host and what kind of characteristics the SAs should have, wheress, the SPD is
used for sdecting traffic that needs IPsec processing and possible peer negotiation. IKE is used for performing that
negotiation. When two IKE daemons negotiate for establishing an SA, the initiator sends across proposals for the SAs
he is willing to establish. As mentioned in [12] "IKE proposas are "suggestions' by the initiator of an exchange to the
responder as to what protocols and attributes should be used on a class of packets. For example, a given exchange may
ask for ESP with 3DES and MD5 and AH with SHA1 (applied successively on the same packet), or just ESP with

15

Demonstration of Quality of Security Service Awareness for 1Psec

Blowfish and RIPEMD-160. The responder examines the proposals and determines which of them are acceptable,
according to policy and any credentials. The goa of security policy for IKE is thus to determine, based onlocd policy
(provided in the i saknpd. pol i cy file), credentias provided during the IKE exchanges (or obtained through other
means), the SA attributes proposed during the exchange, and perhaps other (side-channdl) information, whether a pair
of SAs should be ingtdled in the system (in fact, whether both the IPsec SAs and the flows should be installed). For
each proposal suggested by or to the remote IKE daemon, the KeyNote system is consulted as to whether the proposal
is acceptable based on local policy and remote credentids (e.g., KeyNote credentials or X509 certificates provided by
the remote IKE daemon)”.

The local policy is contained in the i saknpd. pol i cy file, which is typicaly placed in the / et c/ i saknpd
directory. i saknpd. pol i cy is smply a flat ascii file containing KeyNote policy assertions (more details on the
syntax of thisfile can be found in [12],[6]).

The responder selects a proposal, the first one from the list of proposals that are sent to him that conforms to his loca
policy (as expressed in i saknpd. pol i cy). He sends this proposa back to the initiator. The initiator checks his own
i saknpd. pol i cy, to make sure that the selected proposa indeed agrees with hisloca policy.

In our QoSS demo we want a different local policy to be enforced in the QoSS aware peer, which acts as the initiator,
for medium and high security level (for low security level we do not require any IPsec processing). As in the case of
i saknpd. conf , weareusing a predefined set of aternate IKE local security policies that describe the characteristics
we want our SAs to have for each security level and we make active the proper i saknpd. pol i cy file through our
QoSS module.

The different local policy files we are using can be seen in Figures 8 and 9. The main difference of these files is that
thei saknpd. pol i cy for medium security level requires DES as the encryption agorithm for t el net traffic and

MD?5 as the authentication agorithm for f i nger , whilst i saknpd. pol i cy for high security level requires 3DES
and SHA for the respective cases.

KeyNot e- Versi on: 2
Aut hori zer: "POLI CY"
Li censees: "passphrase: mekm t asdi goat "

Condi tions: app_domain == "|Psec policy" &&
((esp_present == "yes") &&
(((local _filter_port == "23") || (renpote_filter_port == "23")) &&
(esp_enc_al g == "des"))
) 1
((ah_present == "yes") &&
(((local _filter_port == "79") || (renote_filter_port == "79")) &&
(ah_auth_al g == "hmac-nd5"))

) > "true";

Figure 8: i saknpd. pol i cy on Initiator for medium security leve

KeyNot e- Versi on: 2
Aut hori zer: "POLI CY"
Li censees: "passphrase: mekm t asdi goat "

Condi tions: app_domain == "|Psec policy" &&
((esp_present == "yes") &&
(((local _filter_port == "23") || (renote_filter_port == "23")) &&
(esp_enc_al g == "3des"))
) 1
((ah_present == "yes") &&
(((local _filter_port == "79") || (renote_filter_port == "79")) &&
(ah_auth_al g == "hmac-sha"))

) -> "true";

Figure 9: i saknmpd. pol i cy on Inititator for high security leve

16

Demonstration of Quality of Security Service Awareness for 1Psec

The locd policy file for the responder can be seen in Figure 10. For SAs to be successfully established for any security
level of the initiator, the responder's policy should be broad enough to accept the different possible proposals. So this
IPsec node accepts both DES and 3DES as encryption agorithms and both MD5 and SHA as authentication
agorithms.

KeyNot e- Ver si on: 2
Aut hori zer: "POLI CY"
Li censees: "passphrase: meknit asdi goat "

Condi tions: app_domain == "|Psec policy" &&
((esp_present == "yes") &&
(((local _filter_port == "23") ||
(remote_filter_port == "23")) &&
((esp_enc_alg == "des") || (esp_enc_alg == "3des")))
) 1
((ah_present == "yes") &&
(((local _filter_port == "79") || (renote_filter_port == "79")) &&
((ah_auth_alg == "hmac-nmd5") || (ah_auth_alg == "hnmac-sha")))

) -> “true";

Figure 10: i saknpd. pol i cy on Responder

7. Bringing it All Together: QoSS Management Module

The events that control i saknpd consist of negotiation initiations from a remote party, user input via a FIFO or by
sgnas, up-cdls from the kernel via a PF_KEY socket, and lastly by scheduled events triggered by timers running out
(Figure 11) [14]. From these methods, of specid interest for our demo is the user input by signas or viaa FIFO.

Timer scheduled Isakm_pd negotiation initiations
events » event-driven |« Remote peer
daemon
A
Upcdls Signals
(PF_KEY) or
FIFO
Kerne User
(new SA
expired SA)

Figure 11: Controlling events for i saknpd

We may send signas to the IKE daemon. Currently two such signals are implemented:
SIGUSR1, which generate a report, with status information of the daemon
SIGHUP, which re-initidizesi saknpd.

i saknpd. conf is read when the IKE daemon is first started and configuration information is loaded into the

daemon’'s memory for use in generation of SA proposas. i saknpd will reread the configuration file when sent a
SIGHUP signdl.

Smilarly i saknpd. pol i cy isread when i saknpd is first started, and every time it receives a SIGHUP signal.
The new policies read will be used for all new Phase 2 SAs established from that point on (even if the associated Phase
1 SA was dready established when the new policies were loaded). The policy change will not affect aready
established Phase 2 SAs[12].

17

Demonstration of Quality of Security Service Awareness for 1Psec

So if wechangei saknpd. conf and/or i saknpd. pol i cy filesand sent a
kill -HUP <PID of isaknpd process>
the daemon will reread these files and take into account from now on the new information contained in them. The

daemon'’s process ID is contained in / var / r un/ i saknpd. pi d.

In order to control the daemon we can also send commands through a FIFO cdled i saknpd. fi f o, which can be
foundin/ var/run/i saknpd. fi f 0. The commands are one-letter codes followed by arguments [15]:

C connect Establish a connection with a peer

C configure Addor remove configuration entries.

D debug Change logging level for adebug class
r report Report status information of the daemon

t teardown Teardown a connection

The last command is of specia importance for our demo to address the problem of stopping aready established phase
2 SAs when the QoSS policy has changed. When we write to the FIFO

t <connection identifier>

the daemon removes the pair of SAs associated with the connection from the SA databases and it also notifies the peer
daemon that these SAs are no longer valid, so that he can adso remove them from his databases. The use of this
command and especiadly the naming conventions for connection identifiers are not well documented. Through
experimentation we observed the following:

-the first pair of SAs established (for incoming and outgoing traffic) is described by "Connection-0"

-the second pair of SAs established is described by "Connection-1"

If the commands
t Connection-0
t Connection-1

areissued to the isakmpd FIFO and a SIGHUP is sent to the daemon, then for subsequent traffic:
-the third (chronologically) pair of SAs established is described by " Connection-1"
-the fourth pair of SAs established is described by "Connection-2"

Again after the FIFO commands
t Connection-1
t Connection-2

and a SIGHUP to the daemon
-the fifth (chronologically) pair of SAs established is described by "Connection-2"
-the sixth pair of SAs established is described by "Connection-3"

and so on.

The code for the QoSS Management Module can be seen in Figure 12. This sh shdll script file gives us an interface
for changing security level and causing the necessary changes to the IPsec mechanism. The functionality of this
module has as follows:

A menu is continuoudly displayed on the screen, which prompts the user to select a security level.

When low security level is selected, if the IKE daemon is not running, it is not necessary to take any action, since our
system does not provide IPsec protection in low security level. If the daemon is running, then through the FIFO we tear
down existing connections, and through ipsecadm utility we make sure that al SAs and rules are removed from |Psec
databases.

When medium security level is sdlected, first of al we copy to i saknpd. conf the configuration data for medium
level (contained in i saknpd. conf . medi um) andto i saknpd. pol i cy thelocd policy for medium security level
(fromi saknpd. pol i cy. medi um. Then al SAs and rules are removed from IPsec databases. Rules for the flows

18

Demonstration of Quality of Security Service Awareness for 1Psec

are loaded to the SPD and then if the daemon was not running we start it. If it was already running, we tear down
existing connections through the FIFO (to make sure that the peer is notified) and we send a SIGHUP to the daemon to
forceit to read the new configuration and policy data. Logistics for forming the correct connection identifier are kept.

Similarly when high security level is sdected, first of al we copy to i saknpd. conf the configuration data for high
level (contained in i saknpd. conf . hi gh) andto i saknpd. pol i cy thelocal policy for high security level (from
i saknpd. pol i cy. hi gh). Therest of the steps are similar to those for the medium leve.

NOTE: it should be noted that our demo aways assumes that there are two pair of SAs established, one for t el net

and one for fi nger traffic, so whenever there is a security level change, it tries to delete al of them. This assumes
that whenever we change mode, we then generate both t el net and f i nger traffic, before changing again level. The
akward logistics for the connection index forced this partial handling. A more complete approach would be to actualy

check how many SAs (through / ker n/ i psec info, see next section) are currently established and tear down
connections accordingly.

iy
H

s_banner () # Creates a banner for User Menus
{
cl ear
echo ° date’
echo ""
echo "
echo ""
echo " SECURI TY LEVEL MENU
echo "
echo ""
}
s_menu() # Displays the menu
{
echo ""

echo "\t Please select Security Level :\t\t\t*****rrxxrskskdkdrrn

I N AN AR AN AN AR AR AR SARAR AR AR S

echo "\t\t 1. LOAt\t\t\t\t\t™ SECURI TY LEVEL:\t" $NETWORK_MODE"\t *"
echo "\t\t 2. MEDIUMt\t\t\tVt*\veNtheNer"

echo "\t\t 3 HlG_'\t\t\t\t\t*********************************"

echo "\t\t"

echo "\t\t 0. Cancel"

echo ""

echo "\t Sel ect by pressing a nunber and then ENTER : '
}
s_low() # Calls Low things
{

if [$NETWORK MODE !'= "Low']

t hen

echo "changi ng node to LOW
NETWORK_MODE=" Low'

echo "Entered LOW actions"
i f s_daenon_runs

t hen
echo "t Connecti on-"$CONN_| NDEX
echo "t Connection-"$CONN_|I NDEX > /var/run/isaknpd.fifo
echo "t Connection-"$(($CONN_I NDEX+1))
echo "t Connection-"$(($CONN_| NDEX+1)) > /var/run/isaknmpd.fifo

19

Demonstration of Quality of Security Service Awareness for 1Psec

echo "...flushing current |PSec settings"”
i psecadm f | ush
f
el se
echo "Systemis already in LON node"
f
}
s_nedi um() # Cal | s Medi um t hi ngs
if [$SNETWORK_MODE ! = " Medi unt']
t hen
NETWORK_MODE=" Medi um
echo "Entered MEDI UM acti ons"
echo ""
echo "...fetching MEDIUM | evel configuration info"
cp /etc/isaknpd/isaknmpd. conf. medi um/etc/isaknmpd/i saknpd. conf
cp /etc/isaknmpd/isaknpd. policy. medi um/etc/isaknmpd/isaknpd. policy
echo "...flushing current |PSec settings"
i psecadm f | ush
sh /root/vpn28_ah_a
i f s_daenon_runs
t hen
echo "t Connecti on-"$CONN_|I NDEX
echo "t Connection-"$CONN | NDEX > /var/run/isaknpd.fifo
CONN_I NDEX=$(($CONN_| NDEX+1))
echo "t Connecti on-"$CONN_| NDEX
echo "t Connection-"$CONN_|I NDEX > /var/run/isaknpd.fifo
echo "...rereading configuration info"
kill -HUP “cat /var/run/isaknpd. pid"
el se
echo "...starting autonated keyi ng daenon i saknpd"
i sakmpd
f
el se
echo "Systemis already in MEDI UM node"
f
}
s_hi gh() # Calls H gh things
{
if [SNETWORK_MCDE ! = "H gh"]
t hen

NETWORK_MCDE="Hi gh"
echo "Entered H CGH actions”
echo ""
echo "...fetching HHGH | evel configuration info"
cp /etc/isaknpd/isaknmpd. conf. high /etc/isaknpd/i saknpd. conf
cp /etc/isaknmpd/isaknpd. policy. high /etc/isaknpd/isaknpd. policy
echo "...flushing current |PSec settings"
i psecadm f | ush
sh /root/vpn28_ah_a
i f s_daenon_runs
t hen
echo "t Connecti on-"$CONN_|I NDEX
echo "t Connection-"$CONN_|I NDEX > /var/run/isaknpd. fifo
CONN_| NDEX=$(($CONN_| NDEX+1))
echo "t Connecti on-"$CONN_| NDEX
echo "t Connection-"$CONN_|I NDEX > /var/run/isaknpd.fifo

20

Demonstration of Quality of Security Service Awareness for 1Psec

echo "...rereading configuration info"
kill -HUP “cat /var/run/isaknpd. pi d’
el se
echo "...starting autonated keyi ng daenon i saknpd"
i sakmpd
f
el se
echo "Systemis already in H GH node"
f
}
s_daenon_runs() # returns O if isaknpd is running
{
ps -ax | grep isaknpd | grep -v grep > daenon_search
if [-s daenmon_search]
t hen
echo "...isaknpd is RUNNI NG'
return O
el se
echo "...NO isaknpd running"
return 1
f
}
s_cl eanup() # prepare for exit
{
i f s_daenon_runs
t hen
echo "...killing automated keyi ng daenon i saknpd”
kill “cat /var/run/isaknpd. pid
echo "...flushing current |PSec settings"
i psecadm fl ush
f
rm daenon_sear ch
}
MAIN
s_banner
CONN_I NDEX=0
NETWORK_MCDE=" None"
whil e true
do
s_menu
read CHO CE
while ["$CHO CE" -It "0"] || ["$CHA CE" -gt "3"]
do
echo "*"
echo "\t Pl ease sel ect a nunber between 0 and 3:
read CHO CE
if ["$CHOCE'" = ""]
t hen
s_cl eanup
exit
f
done

case $CHAOCE in

21

Demonstration of Quality of Security Service Awareness for 1Psec

1) s_low;;
2) s_nedium;;
3) s_high ;;
0) echo "\tSecurity Level selection was cancel |l ed"
s_cl eanup
br eak;
*) echo "\tWong sel ection. The programwill terninate"
s_cl eanup
br eak;
esac
echo "Press ENTER to continue :"
read tttt
cl ear
done

Figure 12: QoSS management module — | evel 28 _fifo

8. Generating and Displaying Traffic

The negotiation for establishment of SAs begins when traffic, for which there are rules in the SPD requiring 1Psec
processing, appears, but the appropriate SAs cannot be found in the SAD.

So in order to trigger the whole process, these commands can be issued at the initiator:

telnet w.x.y.z fort el net treffic
finger root@v x.y.z forfinger traffic

We can observe traffic among the two peers by issuing the command below:
tcpdunp -N -v host a.b.c.d and w. x.y.z

t cpdunp prints the headers of the packets on a network interface that match a boolean expression [16], in our case

the packets exchanged among the two IPsec nodes. When no IPsec processing is applied, thet cpdunp output can be
seen in Figure 13, where various info for the packets is visible, among them the application names.

10: 24: 49. 807580 initiator.4850 > responder.telnet: S 1673683391:1673683391(0) w n 16384 <nss
1460, nop, nop, sackCK, nop, wscal e 0, nop, nop, ti mestanp 1750110177 0> (DF) [tos 0x10]

10: 24: 49. 808442 responder.telnet > initiator.4850: S 2761636766: 2761636766(0) ack 1673683392 wi n
17376 <nss 1460, nop, nop, sackCK, nop, wscal e 0, nop, nop, ti mestanp 1371743825 1750110177> (DF)

10: 24: 49.808911 initiator.4850 > responder.telnet: . ack 1 wn 17376 <nop, nop, ti mestanp
1750110177 1371743825> (DF) [tos 0x10]

10: 24: 49. 847519 responder.telnet > initiator.4850: P 1:4(3) ack 1 win 17376 <nop, nop,ti nmestanp
1371743825 1750110177> (DF) [tos 0x10]

10: 24: 49. 848122 initiator.4850 > responder.telnet: . ack 4 wn 17376 <nop, nop, ti mestanp
1750110178 1371743825> (DF) [tos 0x10]

10: 24: 49. 848340 initiator.4850 > responder.telnet: P 1:4(3) ack 4 win 17376 <nop, nop,ti mestanp
1750110178 1371743825> (DF) [tos 0x10]

10: 24: 56. 281101 initiator.39402 > responder.finger: S 1810136654:1810136654(0) win 16384 <nss
1460, nop, nop, sackCK, nop, wscal e 0, nop, nop, ti mestanp 1750110190 0> (DF)

10: 24: 56. 281969 responder.finger > initiator.39402: S 2729467036: 2729467036(0) ack 1810136655 wi n
17376 <nss 1460, nop, nop, sackCK, nop, wscal e 0, nop, nop, ti mestanp 1371743838 1750110190> (DF)

10: 24:56. 282450 initiator.39402 > responder.finger: . ack 1 wn 17376 <nop, nop, ti nestanp
1750110190 1371743838> (DF)

10: 24: 56. 283221 initiator.39402 > responder.finger: P 1:5(4) ack 1 win 17376 <nop, nop,tinestanp
1750110190 1371743838> (DF)

10: 24: 56. 307217 responder.finger > initiator.39402: . ack 5 wn 17376 <nop, nop,tinestanp
1371743838 1750110190> (DF)

10: 24: 56. 307698 initiator.39402 > responder.finger: P 5:7(2) ack 1 win 17376 <nop, nop,tinestanp
1750110190 1371743838> (DF)

ib;25:l4.750969 initiator > responder: icnp: echo request

22

Demonstration of Quality of Security Service Awareness for 1Psec

10: 25: 14. 751128 responder > initiator: icnp: echo reply
10: 25: 15. 752717 initiator > responder: icnp: echo request
10: 25: 15. 752872 responder > initiator: icnp: echo reply

Figure 13: tcpdump output with no IPsec processing

When |Psec is used for the packets (in medium and high security levels), from the t cpdunp output (Figure 14) we
can only tell whether it is an ESP or AH packet. Ping packets still go in clear, since our policy does not require any
| Psec processing for them.

10: 26: 06. 888971 esp initiator > responder spi Ox2A0A519A seq 1 |len 100
10: 26: 09. 346186 esp initiator > responder spi Ox2A0A519A seq 2 |len 100
10: 26: 09. 347727 esp responder > initiator spi Ox7A82B723 seq 1 | en 100
10: 26: 09. 348684 esp initiator > responder spi O0x2A0A519A seq 3 len 84
10: 26: 09. 388378 esp responder > initiator spi Ox7A82B723 seq 2 len 92
10: 26: 09. 430333 esp initiator > responder spi Ox2A0A519A seq 4 len 84
10: 26: 09. 430728 esp initiator > responder spi Ox2A0A519A seq 5 len 92
10: 26: 09. 431609 esp responder > initiator spi Ox7A82B723 seq 3 len 84
10: 26: 09. 432186 esp responder > initiator spi Ox7A82B723 seq 4 |len 108
10: 26: 15. 790018 ah initiator > responder spi Ox165AAE30 seq 1 len 88
10: 26: 20. 347206 ah initiator > responder spi Ox165AAE30 seq 2 len 88
10: 26: 20. 348608 ah responder > initiator spi 0x493C9386 seq 1 len 88
10: 26: 20. 349497 ah initiator > responder spi Ox165AAE30 seq 3 len 76
10: 26: 20. 351389 ah initiator > responder spi Ox165AAE30 seq 4 len 80
10: 26: 20. 375272 ah responder > initiator spi 0x493C9386 seq 2 len 76

10: 26: 24. 733178 initiator
10: 26: 24. 733404 responder
10: 26: 25. 737265 initiator
10: 26: 25. 737510 responder
10: 26: 26. 746936 initiator

responder: icnp: echo request
initiator: icnp: echo reply
responder: icnp: echo request
initiator: icnp: echo reply
responder: icnp: echo request

VVVYVYV

Figure 14: tcpdump output with IPsec processing

A GUI network protocol analyzer, like Et her eal , could dso beeused. Et her eal dlowsinteractive browsing of
packet data from a live network. Like other protocol analyzers, its main window shows 3 views of a packet. It shows a
summary line, briefly describing what the packet is. A protocol tree is shown, which alows to drill down to exact
protocol or field of interest. Finally, a hex dump shows exactly what the packet looks like when it goes over the wire
[17]. When packets are captured certain filters can be used for sdlecting the traffic of interest. The Fi | t er s didog
alows the creation and modification of filters. So we should create a new filter for capturing the traffic among the

hosts we are interested by defining as
Filter string: host <initiator-host-nane> and <responder-host - nane>

9. Displaying the Contents of Security Association Database

As mentioned in [4] "in each IPsec implementation there is a nomina Security Association Database, in which each
entry defines the parameters associated with one SA. Each SA has an entry in the SAD. For outbound processing,
entries are pointed to by entries in the SPD. Note that if an SPD entry does not currently point to an SA that is
appropriate for the packet, the implementation creates an appropriate SA (or SA Bundle) and links the SPD entry to the
SAD entry. For inbound processing, each entry in the SAD is indexed by a destination |P address, | Psec protocol type,
and SPI." An SAD entry would include the fields: Destination IP address, IPsec protocol (AH or ESP), Security
Parameter Index (SPI), Sequence counter, Sequence overflow flag, Anti-replay window info, AH type and info, ESP
type and info, Lifetime info, Tunnel/transport mode flags, Path MTU info (Figure 15).

23

Demonstration of Quality of Security Service Awareness for 1Psec

Implemented as PE KEY
ahash tablein Kernel interface

SA identifier set for incoming policy matching
. Antireplay | AH type J ESP type J|Lifetime j 1PSec Protoff Path
Overflow Wlndow & info & info mfo Mode MTU info

SA identifier set for outgoing policy matching

—
‘ ‘ Seq Flag ‘ Antlreplay N type ESP type Ipsec PrOto
Proto Counter Overflow Window & info & info mfo Mode MTU mfo

SA identifier tuple

Seq.Flag [l Antireplay | AH type || ESP type jLifetime J1PSec Proto jjPath
Overflow}| Window & info & info info Mode MTU info

Figure 15: Security Association Database in OpenBSD

In OpenBSD SAD entries can be set manualy with the i psecadm utility, or through automatic key exchange
daemons, like IKE daemon and Photuris. The SAD is referred to as TDB or TDB table throughout OpenBSD's | Psec

source code.

A list of dl security associations in the kernel tables can be obtained via the ker nf s file <i psec> (typicdly in
</ kern/i psec>). Inorder to access thisfile, ker nf s should first be mounted, through the command:

mount -t kernfs /kern /kern

This file is continually updated by the kernel and a listing of its typica contents (obtained through the command cat
/ kern/i psec) can be seen in Figure 16. The listing displays four SAs currently established and a description of
their characteristics.

Hashmask: 31, policy entries: 2
SPI = 554d633b, Destination = a.b.c.d, Sproto = 51
Est abl i shed 26 seconds ago
Source = wW.X.y.z
Fl ags (00011082) = <tunneling, usedtunnel >
Cypto ID 3
xform = <l Psec AH>
Aut henti cati on = <HVAGC MD5>
40 bytes processed by this SA
Last used 21 seconds ago
Expi rati ons:
Hard expiration(l) in 3574 seconds
Soft expiration(l) in 3214 seconds

SPl = 40329317, Destination = a.b.c.d, Sproto = 50
Est abl i shed 156 seconds ago
Source = wW.X.y.z

24

Demonstration of Quality of Security Service Awareness for 1Psec

Fl ags (00011082) = <tunneling, usedtunnel >
Cypto ID 1
xform = <l Psec ESP>
Encrypti on = <DES>
Aut henti cation = <HVAC MD5>
200 bytes processed by this SA
Last used 82 seconds ago
Expi rati ons:
Hard expiration(1l) in 3444 seconds
Soft expiration(l) in 3084 seconds

SPI = 297c9f 16, Destination = w Xx.y.z, Sproto = 51

Est abl i shed 26 seconds ago

Source = a.b.c.d

Fl ags (00001082) = <tunneling>

Cypto ID 4

xform= <l Psec AH>
Aut henti cation = <HVAC MD5>

72 bytes processed by this SA

Last used 21 seconds ago

Expi rati ons:
Hard expiration(1l) in 3574 seconds
Soft expiration(l) in 3214 seconds

SPI = f5e7af 83, Destination = w.x.y.z, Sproto = 50
Est abl i shed 156 seconds ago
Source = a.b.c.d
Fl ags (00001082) = <tunneling>
Cypto ID 2
xform = <l Psec ESP>
Encrypti on = <DES>
Aut henti cati on = <HVAC MD5>
360 bytes processed by this SA
Last used 82 seconds ago
Expi rati ons:
Hard expiration(1l) in 3444 seconds
Soft expiration(l) in 3084 seconds

Figure 16: SAs in / kern/i psec

The script program of Figure 18 parses the / ker n/ i psec file and displays information for current SAs in a more
compact format as can be seen below (Figure 17).

R S S O S S R

* SAs currently used and their ALGORI THVS *

R R R R R S Sk kR kR S R IRk kb R S kR R R R R Rk kS kR R

TIME 10: 21:57
SA# | Psec- Pr ot ocol Destination SPI Al gorithm

TI ME: 10: 21: 59
SA# | Psec- Pr ot ocol Destination SPI Al gorithm

R R R R R S Sk kR R S R IRk kR S kR R I R R R R ok R S kb

* SAs currently used and their ALGORI THVS *

EESS

TIME: 10: 22:11
SA# | Psec- Prot ocol Destination SPI Al gorithm

25

Demonstration of Quality of Security Service Awareness for 1Psec

1. ESP a.b.c.d, 248c0d8f, DES

2. ESP W. X. V. Z, 8c59e724, DES

TIME 10:22: 13

SA# | Psec- Pr ot ocol Destination SPI Al gorithm
1. ESP a.b.c.d, 248c0d8f, DES

2. ESP W X.Y.Z 8c59e724, DES

R R R e Sk S R R R R R Rk Sk Sk e e e S I R R R kR R o Sk o S S R R R S Rk

*

khkkhkhkhkhkhdkhkhhkhkhkhhhhddhhhhdhhhhhdddhddhhhdhddddddhhhhdhdddddrddxhhdddrrxxxx%x

TI ME: 10: 22: 25

SA# | Psec- Pr ot ocol Destination SPI Al gorithm
1. ESP a.b.c.d 248c0d8f, DES

2. ESP W. X. Y. Z, 8c59e724, DES

3. AH W X.Y.Z, 2ef a696¢, MD5

4. AH a.b.c.d 5b78f c88, MD5

TIME 10: 22: 27

SA# | Psec- Pr ot ocol Destination SPI Al gorithm
1. ESP a.b.c.d 248c0d8f, DES

2. ESP W. X. Y. Z, 8c59e724, DES

3. AH W X.Y. Z, 2ef a696¢, MD5

4. AH a.b.c.d 5b78f c88, MD5

SAs currently used and their ALGORI THVS *

Figure 17: Output from SA display script

More specificaly the main routine every 2 seconds generates a copy file of / ker n/ i psec (since we cannot process
directly the ker nf s file), and calls an awk routine to process it. The output screen is cleared every 3° time the routine
is called, so up to two successive "instances’ of / ker n/ i psec are displayed on the same screen.

The awk routine parses the file with the copied contents of / ker n/ i psec, searching for specific info for each SA,
like: SPI of SA, Degtination IP of SA, IPsec protocol, and agorithm. It performs the search, based on the fact that the
kernd output has a standard format, so certain info appears in the same position within an SA description:

We have defined in our awk routine that afield is a sequence of characters separated by the next one by a space or a
newline.
A line like the one below

Hashmask: x, policy entries: y
is aways part of the first SA description in the kerndl output, therefore the first SA description has the above extra 4
fields. So, an ESP SA description consists of 54 fidlds, if it is the first in the kernel output, and the I1Psec protocol
information will appear on the 13" field and the agorithm in the 34" for example. For a subsequent ESP SA
description there is a total of 50 fields, with the protocol information appearing on the 9" field and the dgorithm in
the 30™. So depending on the total number of fidlds in the SA description, we search on the proper position for the
info of interest (Figure 18).

a_banner () # Creates a banner for /ipsec/kern output
cl ear
eChO LR R R R R R R R R R R R R I L
echo "* SAs currently used and their ALGORI THVS *

echo LU R R O AL

26

Demonstration of Quality of Security Service Awareness for 1Psec

}

I
H

echO nwn

awk_routine() # Processes and displays /ipsec/kern out put

H
H

/usr/bin/awk '
BEGAN{ FS = "[\t]+"; RS =""
print "SA#" "\t" "lPsec-Protocol” "\t" "Destination" "\t" "SPI" "\t\t" "Al gorithn

[S e T T
}
if ((NF==54) || (NF ==051))
{
print NR"." "\t" testProto($13) "\t" $10 "\t" $7 "\t" testAl gorithn($34)
}
if ((NF==50) || (NF==47))
{
print NR"." "\t" testProto($9) "\t" $6 "\t" $3 "\t" testA gorithn($30)
}
}
function testProto(inProto, outProto)
{
if (inProto == "50\n")
{
outProto =" ESP"
}
el se
if (inProto == "51\n")
{
outProto =" AH "
}
return outProto
}

function testAl gorithn(inA gorithm outA gorithm
if (inAlgorithm== "<3DES>\n")
out Al gorithm = "3DES"
LI se
if (inAgorithm == "<HVAC SHA1>\ n")
} out Al gorithm = "SHA1"

el se

if (inAlgorithm== "<DES>\n")

{

out Al gorithm = "DES"
}
el se

if (inAlgorithm=="<HVAGC MD5>\n")

out Al gorithm = "NMD5"

27

Demonstration of Quality of Security Service Awareness for 1Psec

}
}
}
return out Al gorithm

}

" /root/text SA
}

MAIN

a_banner
i=1
whil e true
do
if [$ ==3]
t hen
a_banner
i=1
fi
cat /kern/ipsec > /root/text_SA
echo “date "+TIME %t 9%V 98"
awk_routine
echo ""
sleep 2
i =$(($i+1))
done

Figure 18: SA display script —awk_SA

10. Compr ehensive Sequence of Demonstration Steps
The necessary files on each peer are:

Initiator:
The file with the rules for the SPD in /root: vpn28_ah a
The QoSS management module in /root: level28 fifo
The configuration and policy filesin /etc/isskmpd: isskmpd.conf.medium
isskmpd.conf.high
isskmpd.policy.medium
isskmpd.policy.high
Responder:
The SA display script in /root: awk_SA
The configuration and policy filesin /etc/isskmpd: isskmpd.conf
isskmpd.policy

The necessary actions on each peer are:

Responder:

Mount ker nf s:

mount -t kernfs /kern /kern

Run the SA display script on a window:

sh awk_SA

Start the IKE daemon (preferably in debug mode) in another window:
i saknpd -d - DA=99

Run tcpdump on a third window:

28

Demonstration of Quality of Security Service Awareness for 1Psec

tcpdunp -N -v host a.b.c.d and w. x.y.z
or

Run the Ethereal network analyzer

et her eal

Initiator

Run the QoSS management module on a window:
sh level 28 fifo

Generate traffic on other windows:

telnet wx.y.z

finger root@v. x.y.z

11. References

[1] Irvine, C. and Levin, T., “Quality of Security Service”, Proc. of New Security Paradigms Workshop 2000, Cork,
Ireland, September 2000, pp. 91-99

[2] Irvine, C. and Levin, T., “A Note on Mapping User-Oriented Security Policies to Complex Mechanisms and
Services’, Technical Report NPS-.CS-99-08, Naval Postgraduate School, Monterey, CA, June 1999.

[3] Spyropoulou, E., Levin, T., and Irvine, C., "Calculating Costs for Quality of Security Service', Proc. of the
Computer Security Applications Conference, New Orleans, LA, December 2000, pp. 334-343.

[4] Kent. S. and Atkinson, R., "Security Architecture for the Internet Protocol”, Internet RFC 2401, Internet
Engineering Task Force, November 1998.

[5] Blaze, M., loannidis, J. and Keromytis, A.D., "Trust Management for IPSec", Proc. of the Internet Society
Symposium on Network and Distributed Systems Security 2001, San Diego, CA, February 2001, pp. 139-151.

[6] Blaze, M., Feigenbaum, J., loannidis, J. and Keromytis, A.D., "The KeyNote Trust Management System Version
2", Internet RFC 2704, Internet Engineering Task Force, September 1999.

[7] Irving, C., Levin, T., Spyropoulou, E., and Allen, B., "Security as a Dimension of Quality of Servicein Active
Service Environments', Proc. of 3 Annual International Workshop on Active Middleware Services, San
Francisco, August 2001

[8] Spyropoulou, E., Agar, C., Levin, T., and Irvine, C., “IPsec Modulation for Quality of Security Service”, Technica
Report NPS-CS-02-01, Naval Postgraduate School, Monterey, CA, January 2002.

[9] Using IPsec (Internet Security Protocol), OpenBSD Frequently Asked Questions,
http://www.openbsd.org/fag/fagl3.html, October 2001

[10] McDondd, D., Metz, C., Phan, B., "PF_KEY Key Management API, Version 2", Internet RFC 2367, Internet
Engineering Task Force, July 1998

[11] ipsecadm(8), OpenBSD System Manager's Manual, http://www.openbsd.org/cg-bin/man.cgi, August 1997

[12] isakmpd.policy(5), OpenBSD Programmer’'s Manual, http://www.openbsd.org/cg-bin/man.cgi, October 1998

[13] isakmpd.conf(5), OpenBSD Programmer's Manual, http://www.openbsd.org/cg-bin/man.cgi, October 1998

[14] isakmpd(8), OpenBSD System Manager's Manud, http://www.openbsd.org/cg-bin/man.cgi, July 1998

[15] OpenBSD: DESIGN-NOTES, http://www.openbsd.org/cgi-bin/cvsweb/src/shin/isskmpd/DESIGN-NOTES, June
2001

[16] tcpdump(8), OpenBSD System Manager's Manual, http://www.openbsd.org/cg-bin/man.cgi, July 1998

[17] The Ethereal Network Anayzer, http://www.openbsd.org/cgi-bin/cvsweb/ports/net/ethereal/,
http://www.ethereal .com/

29

Demonstration of Quality of Security Service Awareness for 1Psec

APPENDIX A

Guidelinesfor installing OpenBSD 2.9 -stable with an X-Windows GUI
(starting from OpenBSD 2.8 CD)

A.INSTALL OpenBSD 2.8 from the CD
Follow guiddlines on the CD labdl.

Make sure you allocate sufficient spaceto/ usr , / hone partitions (>1.5G for each).
Configure the network connection as well.

B. AFTERBOOT steps
1) check al applicable steps described in the af t er boot man page
2) make sure that you run the host name command

J)in/ etc/sysctl.conf make surethat the IPsec protocols are enabled. The lines below should be uncommented:
net.inet.esp.enable =1
net.inet.ah.enable =1

C. COPY SOURCE TREE FROM CD

1) if it doesn't exist, create directory where cdrom will be mounted
nkdir -p /cdrom

2) insert OpenBSD CD 1

3) mount the cdrom device

mount -t cd9660 /dev/cdOa /cdrom

4) go to the directory where the source tree will be created

cd /usr/src

5) untar and unzip source file

tar xvfz /cdrom src.tar.gz

D. UPDATE SOURCE from CVSTO 2.9-dahle

Commands below given for csh

1) set method for accessing the anonymous CV S server

setenv CVS_RSH /usr/bin/ssh

2) set the anonymous CV'S server

set env CVSROOT anoncvs@noncvsbh. usa. openbsd. org:/cvs
or anoncvs@noncvsl. ca. openbsd. org:/ cvs

(or any other anonCV S server that responds at the moment. For a complete list, check

http://www.openbsd.org/anoncvs.html. Make sure that the server supports ssh.)

3) set env CVS_| GNORE_REMOTE_ROOT yes

4 cd /usr/src

5cvs -t -d $CVSROOT up -rOPENBSD 2_9 -Pd

and wait for it to finish downloading.

E. UPDATE X11 - part |

(OpenBSD CD 1 should ill be mounted from steps C.1-3, otherwise repeat them)
1) cd /cdrom 2. 8/ packages/i 386

2) ingtall two necessary packages

pkg add -v tcl-8.3.2.tgz

pkg_add -v tk-8.3.2.t9z

Demonstration of Quality of Security Service Awareness for 1Psec

3) cd / hone

It is suggested to install X11 source code to/ home partition for space reasons.
4) umount / cdrom

5) insert and mount OpenBSD CD 2

mount -t cd9660 /dev/cdOa /cdrom

6) untar and unzip X11 source file

tar xvfz /cdrom Xll.tar.qgz

F. UPDATE /etc/group

1) In/etc/group addtheline
aut h: *: 11:

G. CREATE LINK for object code directory

It is suggested that the object code for source codein / usr/ sr ¢ isplacedin/ home partition for space reasons.
1) cd /home

2) nkdi r obj

3) chnod g+w / homre/ obj

4 cd /usr

5rm-rf /usr/obj

6)ln -s /hone/obj [usr/obj

H. REBUILD KERNEL

1) cd /usr/src/sys/arch/i 386/ conf

2) cp CGENERI C OLDGENERI C

Steps 3-5 are for updating the conf i g utility

3 cd /usr/src/usr.sbin/config

4) make cl ean &% nake depend && make
5 make install

6)cd ../../sys/arch/i 386/ conf
7)/usr/sbin/config GENERI C

8) cd ../conpil el GENERI C

9 make cl ean && nmake depend && make
This step takes about 1 hour.

I. REBOOT WITH NEW KERNEL
Dcp /bsd /bsd.old

2) cp bsd /bsd

3) r eboot

J. REBUILD BINARIES

Dcd /usr/src

2rm-r /usr/obj/* (justin case)

3) make obj && nmake build

It's better to make this step right before leaving for the day...it takes from 6 to 12 hours depending on the machine.

K. UPDATE X11 - part I

1) cd /home/ X11
2) environment variables should be set for CV'S update, repeat steps D.1-3

31

Demonstration of Quality of Security Service Awareness for 1Psec

3)cvs -t up -PAd
and wait for it to update X11 source.

L. UPDATE / et ¢ and MAKEDEV

/ et c files need updates for X11 to work properly. Step 1 creates in / n updated/ et c files, so current / etc files can
be compared in detail to them (for example withdi ff -ru /etc/ /n/etc/ 2>&l | nore)and manudly
modified.

Steps 2-4 describe the necessary changes that came up from such a procedure.

Dcd /usr/src/etc &% make distribution-etc-root-var DESTDI R=/n
2)in/ et c/ f bt ab changeline

/dev/ttyC0 0600 /dev/console

to

/dev/ttyC0 0600 /dev/console:/dev/wskbdO:/dev/wsnouse0
J)in/etc/sysctl.conf change

machdep. al | owapert ure=2

A in/etc/ttys undertheline

ttyCr7 "/usr/libexec/getty Pc" vt220 off secure

add the lines

ttyC8 "/usr/libexec/getty Pc" vt220 off secure

ttyC9 "/usr/libexec/getty Pc" vt220 off secure

ttyCa "/usr/libexec/getty Pc" vt220 off secure

ttyCbo "/usr/libexec/getty Pc" vt220 off secure

5) update MVAKEDEV

cp /usr/src/etc/etc.i 386/ MAKEDEV / dev/ MAKEDEV

6) / dev/ MAKEDEV al |

7) r eboot

K. UPDATE X11 - part |11

It is suggested that the object code for X11 & built in a different directory than that of object code for / usr/ src

source

Dcd /var/ X11 && nv xdm xdm

2 test -d /hone/obj _X11 && nv /hone/obj _X11 /hone/obj_X11- &&
rm-rf /hone/obj X11-

nkdir -p /hone/obj X11

4 cd /honme/ obj _X11

5Indir /honme/ X1l && nice nake DESTDI R=/ build

thiswill take awhile...

6) run the utility to setup X11

[usr/ X11R6/ bi n/ XF86Set up

Y ou should know the type of your display card.

For the mouse, you should select as

Prot ocol : wsnouse

Devi ce: /dev/wsnouse

and reboot.. .!

32

Demonstration of Quality of Security Service Awareness for 1Psec

APPENDIX B
Certificate Authority Set-up and Generation of Keysand Certificates
Assume two hosts, host_A and host_B. host_A will play the role of the Certificate Authority.

A. Create CA key and certificate on host A
1) openssl genrsa -out /etc/ssl/privatel/ca.key 1024
2) openssl req -new -key /etc/ssl/private/ca. key
-out /etc/ssl/privatel/ca.csr
Here input Common Name: CISR_CA
3) openssl x509 -req -days 365 -in /etc/ssl/private/ca.csr
-signkey /etc/ssl/privatel/ca. key
-out /etc/ssl/ca.crt
Here input subject=/CN=CISR_CA
4) cp /etc/ssl/ca.crt /etc/isaknmpd/cal.

B. Create host A key and root@host A certificate on host A
5) openssl genrsa -out /etc/isaknpd/private/host_ A key 1024
6) openssl req -new -key /etc/isaknpd/private/host_A. key
-out /etc/isaknmpd/private/root.host_A. csr
Here input Common Name: root@host_A.domain
7) openssl x509 -req -days 365 -in /etc/isaknmpd/private/root.host_A. csr
-CA /etcl/ssl/ca.crt
-CAkey /etc/ssl/privatel/ca. key -CAcreateseri al
-out /etc/isaknpd/private/root. host_A. crt
Here input subject=/CN= root@host_A.domain
8) certpatch -t ufgdn -i root @ost_ A domain -k /etc/ssl/privatel/ca. key
/etc/isakmpd/ private/root.host _A.crt
/etc/isakmpd/ private/root.host_A.crt

C. Create host B key and root@host B certificate on host A
9) openssl genrsa -out /etc/isaknmpd/private/host_B. key 1024
10) openssl req -new -key /etc/isaknmpd/private/host_B. key
-out /etc/isaknmpd/privatel/root. host_B. csr
Here input Common Name: root@host_B.domain
11) openssl x509 -req -days 365 -in /etc/isaknpd/private/root.host_B.csr
-CA /etcl/ssl/ca.crt
-CAkey /etc/ssl/privatel/ca. key -CAcreateseri al
-out /etc/isaknpd/private/root.host_B.crt
Here input subject=/CN= root@host_B.domain
12) certpatch -t ufqgdn -i root @ost_B.domain -k /etc/ssl/private/ca. key
/etc/isaknmpd/ private/root.host_B.crt
/etc/isaknpd/ private/root. host_B.crt
13) Put on afloppy thefiles /etclisaknpd/ calca.crt
/etc/isaknmpd/ private/root.host_B.crt
/etc/isaknpd/ privat e/ host _B. key

D. Transfer key and certificate on host B
14) From the floppy copy the files

ca.crt to /etcl/isaknmpd/calca.crt
root. host_B.crt to /etc/isakmpd/ private/root.host_B.crt
host _B. key fo /etcl/isakmpd/ private/ host _B. key

